

On-chip SPiS Single Particle isolation System

Easy and reliable single cell and particle dispensing into well plates

On-chip Biotechnologies Co., Ltd.

2-16-17 Naka-cho, Koganei-shi, Tokyo 184-0012, Japan TEL.+81-42-385-0461 FAX.+81-42-385-0462

ONCHIP-03B-U003

On-chip SPiS : Single Particle isolation System

Feature of On-chip SPiS

Automatic, high-accuracy dispensing of cells into well plates

- 1. Easy and automatic operation
- 2. Disposable pipette tip-based dispensing system
- 3. Automatic dilution function + CCD camera image recognition
- 4. Dispensing of sample sized up to 200 µm
- 5. Reasonable price

In recent years, single-cell analysis technology has been attracting attention. Single cell analysis requires accurate cell dispensing technology, but the lack of such technologies had been the bottleneck of research. Limiting dilution widely used for cell cloning is a simple and low-cost method, but the single cell dispensing accuracy is low and repeated re-cloning operation is required. In contrast, dedicated single cell analysis instruments are expensive and inconvenient for general purposes, while the accuracy is not at a satisfactory level. Therefore, On-chip Biotechnologies has developed On-chip SPiS in order to solve this problem. It is an easy-to-use instrument that allows dispensing of cells and large particles with single-cell/particle dispensing accuracy of over 90%.

Conventional methods

(e.g., the limiting dilution method: 0.3 cells/well on average)

Accuracy in terms of one cell per well: ca. 21%

On-chip SPiS

Accuracy in terms of one cell per well: ca. 92%

Accuracy and analysis speed of single-cell dispensing

Dispensing time: 54 min/96 wells

Number of cells dispensed	Number of wells (%)	Number of wells with proliferated cells (%)
0	4 (4.2%)	-
1	90 (93.8%)	83 (92.2%)
2	2 (2.1%)	2 (100%)

A549 cells were dispensed into 96 wells at 1 cell/well in 54 min. The number of wells with a single cell dispensed was 90, and cell proliferation was confirmed in 83 of them

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	1	1	1	1	1	1	1	1	1	1	1
В	1	2	1	1	1	1	1	1	1	1	1	1
С	1	1	1	0	1	1	1	0	1	1	1	1
D	1	1	1	1	1	1	1	1	1	1	1	1
Е	1	1	1	1	1	1	1	1	1	1	0	1
F	1	1	1	1	1	1	1	2	1	1	1	1
G	1	1	1	0	1	1	1	1	1	1	1	1
Н	1	1	1	1	1	1	1	1	1	1	1	1

Each compartment represents a well, and the number shown in each compartment indicates the number of cells dispensed.

Confirmation of quantity-specified dispensing (ATP assay)

Quantity-specified dispensing

PC9 cells were dispensed into each well at 1, 2, 3, and 5 cells/well and the amount of ATP was measured, resulting in a good calibration curve in correlation with the number of cells

Cell type: PC 9 The number of cells dispensed per well was specified to 1, 2, 3, or 5 cells/well.

Verification of dispensing accuracy based on the ATP amount

PC9 cells were dispensed into 96-well plates at 1 cell/well. Single cell dispensing accuracy of about 90% was determined by measuring the amount of ATP in each well

	1	2	3	4	5	6	7	8	9	10	11	12
A	1560	1833	2893	710	1580	2213	986	893	860	2086	1020	726
в	886	840	793	1 790	1276	1933	1796	766	1283	883	1970	810
С	1790	2703	3163	1676	2893	1840	1840	1640	2446	2720	2076	1670
D	2363	2173	1896	1713	2113	1706	3430	1583	2543	1400	2763	1783
E	1873	2223	2153	1710	1710	2693	1783	2030	1990	2163	3130	2753
F	2036	4021	2416	1186	1040	1110	1003	1233	1123	1243	2946	1846
G	950	1243	1756	2713	3303	2403	2150	1796	1666	2050	2483	2120
н	2356	3443	1700	2256	2076	4497	2756	2006	1950	2580	2483	2796

Dispensing accuracy of 90%

- A single cell was dispensed in each of 86 wells
- Two cells were dispensed in each of 10 wells

Single cell dispensing of knockout strains

On-chip SPiS is useful for post-genome editing screening. A poliovirus (PV) receptor knockout cell line was generated using CRISPR-Cas9. A single cell was dispensed into each well of a well plate and cultured, followed by viral infection. As a result, 49 clones that acquired PV resistance were successfully established.

Collaboration with Dr. Koike, Tokyo Metropolitan Institute of Medical Science

HDR mutant clone selection

Transfected HEK293T cells were sorted by our microfluidic chip cell sorter (On-chip® Sort) to obtain positive strains, and single cells were dispensed by On-chip SPiS. As a result, genome-edited clones were efficiently obtained one by one. In addition, clones with homozygous mutations were efficiently obtained.

Clones with the target heterozygous or homozygous mutations (A),

On-chip SPiS applications

PV resistance was obtained in 49 clones. 49 wells/96 wells = 51%

Cells that acquired PV resistance

Cells that didn't proliferate

Cells that failed to knockout the PV receptor and died of infection

*Knockout of poliovirus receptor leaves cells uninfected and viable.

*If the allele frequency was less than 20%, it was removed as zero.

Collaboration with Dr. Miyaoka, Tokyo Metropolitan Institute of Medical Science

Dispensing of spheroids of different sizes for drug evaluation

The use of spheroids (cell masses) which can reproduce the biological environment has attracted attention in the evaluation of drugs such as anti-cancer agents. Uniform sized spheroids are necessary for highly accurate evaluation. Therefore, On-chip® Sort was used to select spheroids of a specific size and On-chip SPiS was used to dispense the collect-

ed spheroids on to a well plate for fast and accurate drug efficacy evaluation.

Collaboration with Mr. McClellan, Mitchell Cancer Institute

Application examples:

Screening and isolation of environmental

microorganisms and mutant libraries

Dispensing of GMDs

On-chip SPiS can dispense not only cells and large particles, but also GMDs (microdroplets solidified as gels). Bacteria grown from a single cell can form microcolonies inside the GMDs, which can be recognized by the CCD camera in On-chip SPiS. The use of GMDs is useful in screening and isolating environmental microbes and generation of mutant libraries.

GMDs can be produced by our droplet Recognition of microcologenerator (On-chip Droplet Generator)

nies grown in GMDs

Dispensing and culture of swimming tetrahymena

Protozoan Tetrahymena were dispensed at 1 cell/well into a total of 180 wells and cultured for three days. Single cell dispensing was confirmed in 159 wells, 137 of which had cell proliferation. This result indicates that the system can dispense migrating cells with high accuracy.

		Zero	One		Two	Three	Four or more	Total				
Nu	mber of wells	19 (10.6%)	159 (88.3%)		1 (0.6%)	1 (0.6%)	0 (0%)	180				
					ell proliferatior ell proliferatior	n occurred : 1 n didn't occur	37 (86.2%) so much : 22 (13.8%)				
					(Collaboration wit	h Dr. Nakano, Tsukuł	oa Universit				
	Specificati	on										
	Product name	On-chip SPi	On-chip SPiS									
	Product number	70001	70001									
	Configuration		Main unit and control PC (Windows)									
	Main unit size		610 x 365 x 450 / W x D x H (mm)									
	Dispensing method		Disposable pipette tips									
	Recognition method		Image recognition by a camera with built-in 5-megapixel resolution CMO sensor									
	Tip volume		0.2 µL									
	Sample		Cells, pollen, protists, cell aggregates, beads, gel micro drops, etc.									
	Recognition size		10–200 µm (cultured cells are recognized)									
	Dispensing accuracy		≥ 90% (depending on sample conditions)									
	Biosafety		Installable in a biosafety cabinet									
	Damage to samples		Low damage to samples such as cells									
	Stirring method		Automatic stirring with the disposable pipette tip									
	Solution		Water, culture media, seawater, etc.									
	Processing speed		60 min/96 wells (changeable with setting conditions and sample conditions)									
	Supported plate	•	96-well plates, 384-well plates									
	Power input		AC 100-120V, 50/60Hz									
	Power consump	otion	1.0A typ (ACIN 100V)									

Dispensing pipette tips for On-chip SPiS (sterile) Usage: Used as pipette tips for dispensing. Sterile pipette tips enable aseptic dispensing operations. Part Number: 1007001 Part name: Chip-384S

On-chip Biotechnologies Co., Ltd.

Phone: +81-42-385-0461 E-mail: info@on-chipbio.com

On-chip SPiS applications

Fax: +81-42-385-0462 Home page: https://www.on-chipbio.com

